
Exercise Medicine  |  1 

Aging

The percentage of Americans over the age of 65 is expected 
to increase to nearly 20% by 2030 [1]. This change will have 
significant effects on the economy, healthcare, and society 
in general. Aging is the highest risk factor for the majority 
of chronic diseases - including cardiovascular disease, dia-
betes, arthritis, and cancer [2]. While lifespan continues to 
rise, healthspan (the length of time someone is healthy) has 
increased more slowly and Americans are living longer with 
impaired health and disabilities [3]. Interventions are need-
ed to improve the health and quality of life of the aging pop-
ulation, and studies show that the compression of morbidity 
is possible with lifestyle changes, pharmaceuticals, and con-
tinuous medical advances [2]. 

Inflammaging

Aging is associated with chronic, low-level, systemic inflam-
mation (termed inflammaging) that contributes to most, if 

not all, age-related diseases [4]. Older adults have higher se-
rum levels of several pro-inflammatory cytokines/proteins 
such as IL-6, IL-1ß, CRP, and TNF-α. Elevated levels of these 
molecules in circulation, most notably IL-6, are correlated 
with an increased risk of morbidity and mortality in elder-
ly populations [5]. Furthermore, they are associated with 
sarcopenia, malnutrition, reduced bone density, diabetes, 
arthritis, atherosclerosis, cognitive decline, and other dis-
eases of aging [6]. There is no consensus on the causes of 
inflammaging, though it’s likely due to a host of factors that 
become dysregulated with age. These “hallmarks of aging” 
include reduced autophagy and mitophagy, accumulation 
of DNA and mtDNA damage leading to genomic instabil-
ity, epigenetic changes, telomere shortening, cellular and 
immune senescence, dysbiosis, chronic antigenic stress, di-
minished proteostasis, altered metabolic signaling, stem cell 
exhaustion, increased cellular garbage, and mitochondrial 
dysfunction [7]. Specific details of the aging process and 
inflammaging are beyond the scope of this article and we 
recommend a comprehensive review article for more infor-
mation [7]. In this review article we focus on monocytes and 
their roles in diseases, aging, and exercise. 

Monocytes

Monocytes are circulating mononuclear phagocytes of the 
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innate immune system and have several functions includ-
ing phagocytosis, antigen presentation, and the secretion of 
anti- and pro-inflammatory cytokines [8]. Upon infection 
or tissue damage, they are extravasated into tissue and dif-
ferentiate into macrophages or dendritic cells [9]. Mono-
cytes have been divided into three subtypes based on their 
expression of the cell surface markers CD14 (a co-receptor 
with TLR4 for the detection of LPS), and CD16 (a FCγIII 
receptor that mediates antibody-dependent cell-mediated 
cytotoxicity) [10]. Classical Monocytes (CD14+CD16-) have 
high levels of CD14 on their surface, little to no expres-
sion of CD16, and are the most plentiful type (~80-90%). 
Non-classical (CD14dimCD16+) and intermediate monocytes 
(CD14+CD16+) both express CD16, although non-classical 
monocytes have very low expression of CD14 whereas in-
termediate monocytes have high expression of CD14 [10]. It 
is important to note that prior to 2010, monocytes were pri-
marily categorized into classical (CD14+CD16-) and inflam-
matory (CD14+CD16+) subtypes, and many manuscripts 
which will be discussed in the following sections used this 
classification.

In general, classical monocytes have been shown to be 
primarily involved in tissue repair, immune responses, mi-
gration to inflamed tissues, and phagocytosis [11]. They 
display the broadest range of cytokines in response to LPS, 
express the highest levels of genes involved in pattern recog-
nition and phagocytosis (such as CD93, CD36, CD209, and 
CD163), exhibit high production of reactive oxygen species, 
and express high levels of chemotaxis genes CCR2, CXCR1, 
and CXCR2 [12]. During an inflammatory response CCL2 
(MCP-1), which binds and activates CCR2, is released from 
the bone marrow and promotes classical monocyte release 
into circulation [13]. Once in circulation the classical mono-
cytes make their way to the site of inflammation and release 
pro-inflammatory cytokines such as IL-6, TNF-a, and IL-1ß 
[14]. During steady-state, classical monocytes have a very 
short circulating lifespan (~1 day), and approximately 1% 
transition into intermediate monocytes (~4 day lifespan), of 
which most eventually transition into non-classical mono-
cytes (~7 day lifespan) [15]. 

Intermediate monocytes are thought to be a transitional 
population between the classical and non-classical subsets. 
Due to their diversity, intermediate monocytes have a wide 
range of functions and can display characteristics of both 
classical and non-classical monocytes. They are primarily 
involved in antigen presentation, phagocytosis, and parasite 
recognition [16, 17]. Additionally, they have generally been 
shown to be the most pro-inflammatory subset, producing 
high amounts of TNF-α and IL-1ß. Furthermore, they are 
proportionally increased with age and in many chronic dis-
eases [18].

Non-classical monocytes have high expression of the ad-
hesion-related receptor CX3CR1 and display patrolling be-
havior within the vasculature, removing debris, rearranging 
the cytoskeleton, preventing tumor metastasis, and resolv-
ing inflammation [12]. Like intermediate monocytes they 
are also increased with age [18]. Recently, they were shown 

to display more signs of senescence than intermediate or 
classical monocytes, as they express the highest levels of NF-
ΚB, IL-1α, and miR-146a, and have the shortest telomeres, 
all of which are associated with a senescence-associated se-
cretory phenotype [19]. 

Monocytes and Aging

Although aging is multi-factorial, monocytes may very well 
play an essential role in aging pathology. Their heterogenous 
and highly adaptable nature, ability to respond to pathogens 
and cellular garbage, communication with the adaptive im-
mune system, and numerous defects with age make them 
a key contributor to inflammaging. This section will brief-
ly describe how the inflammaging environment can affect 
monocyte phenotype and functions, for a more detailed de-
scription of all the changes that occur to monocytes with age 
we recommend this review article [20].

  Older adults have higher circulating levels of mitochon-
drial DNA (mtDNA), IL-6, TNF-α, and other proinflamma-
tory factors that dysregulate monocyte functions, which can 
in turn further progress inflammaging. For instance, mtD-
NA, which can act as a DAMP and activate monocytes via 
TLR-9, is increased with age and is positively correlated with 
TNF-α and IL-6 in the blood [21]. In vitro stimulation of 
monocytes from young adults with LPS and high mtDNA 
concentrations, similar to levels found in older adults, in-
creased TNF-α production higher than by LPS alone [21]. 
Given that LPS is also elevated systemically with age, prob-
ably due to dysbiosis [22], microenvironment changes are 
likely to be linked to dysregulated monocyte function and to 
contribute to the inflammaging environment.

Higher circulating TNF-α levels with age have been 
shown to cause multiple effects in monocyte phenotypes 
as well. TNF-α has been shown to induce the M1 (“pro-in-
flammatory”) phenotype in macrophages, and macrophage 
populations are skewed towards the M1 phenotype with age 
[23]. Additionally, TNF-α may skew monocytes towards a 
more pro-inflammatory phenotype, as systemic TNF-α is 
positively correlated with intermediate monocyte frequency, 
and aged TNF-α knock-out mice had similar levels of circu-
lating pro-inflammatory monocytes as younger mice [24]. 
CD11b (ITGAM), an integrin involved in transendothelial 
migration and associated with atherosclerotic plaque forma-
tion, is increased in classical and non-classical monocytes 
with age [18]. While it’s unknown if TNF-α is primarily 
responsible for this altered expression in monocytes, it has 
been shown to increase CD11b expression in neutrophils 
in vivo and ex vivo, and CD11b+ neutrophils are positively 
correlated with plasma TNF-α [25].

Exercise
 

Given the above evidence suggesting that monocytes are im-
portant mediators of inflammatory and pathogen respons-
es, and further that monocyte functions are dysregulated in 
aging and disease, therapies to combat monocyte dysfunc-
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tion are of particular importance. Physical exercise has been 
known for decades to be highly beneficial for overall health. 
A variety of epidemiological and experimental studies have 
described the vast benefits of physical activity, and a full 
treatment of this literature is not possible here. For a broad 
overview of the topic, we refer readers to a recent review ar-
ticle covering the beneficial effects of exercise on preventing 
or treating a variety of age-related conditions [26]. 

Exercise and Immunity

The impact of exercise on immune function has been widely 
investigated since the mid-1980s. In the field of exercise im-
munology, an important distinction is often made between 
acute, or single bouts of exercise, compared to chronic ex-
ercise training. These modes can have disparate and often 
opposite effects on immunity, and these effects are also de-
pendent on intensity and duration of both acute exercise 
bouts and chronic exercise training [27]. One of the earliest 
observations in the field of exercise immunology was of acute 
exercise-induced leukocytosis, an increase in the number of 
circulating white blood cells. Indeed, this leukocytosis was 
described as early as 1893 [28]. Much more recently, chronic 
exercise has been investigated as an anti-inflammatory in-
tervention to treat or prevent inflammation-related chronic 
diseases [27]. Monocytes have been heavily investigated in 
both contexts, and Figure 1 summarizes the current consen-
sus as to the differential effects of acute and chronic exercise 
on monocytes (Figure 1). Given space limitations, we will 
focus this review on the effects of chronic exercise, with spe-
cial attention to studies examining monocytes in the aging 
context. For additional information on acute exercise, we 
refer the reader to a comprehensive review which, although 
now several years old, outlines the basics of the acute mono-
cyte response to exercise [27]. 

Exercise and Monocyte Subpopulations

Although many exercise studies have focused on the effects 
of acute exercise on monocyte phenotype and function, 
some studies have examined the effect of exercise training 
and how it can induce sustained or persistent changes in 
monocytes. Given the association between CD16+ mono-
cyte subtypes and a variety of inflammatory diseases [29-
31], the ability of exercise to alter subpopulation frequencies 
has naturally been of interest. A primary target for interven-
tion has been the elderly, due to their higher frequency of 
CD16+ monocyte subpopulations [18] and their propen-
sity to develop chronic inflammatory diseases [32-34]. Al-
though earlier work by Woods et al. demonstrated that a 6 
month exercise intervention in sedentary older adults did 
not alter total circulating monocyte numbers [35], an im-
portant paper by Timmerman et al. later demonstrated that 
exercise training in older adults decreased the proportion of 
CD16+ monocytes [36] (note this was prior to the establish-
ment of the intermediate and non-classical CD16+ subpop-
ulations). Several later works by the same group, still using 
the now-outdated “inflammatory” CD16+ monocyte defini-
tion, showed similar results in both endurance and resistant 
training [37-39]. To date, the effect of exercise training on 
monocyte populations using the modern definition has not 
been widely investigated, although it was recently demon-
strated that exercise training reduced intermediate but not 
non-classical monocyte proportion in hemodialysis patients 
[40].

Exercise and Monocyte Receptor Expression

Exercise training has been somewhat more widely investi-
gated for its effect on TLR expression, which is often used 
as a proxy for inflammation. In an aged population, exercise 
training reduced whole blood mRNA expression of TLR4 
and of pan-monocyte marker CD14 [41]. Follow-up stud-
ies supported this, demonstrating reduced TLR4 protein 
expression on isolated leukocytes [42] and then on CD14+ 
monocytes [43] after resistance or combined exercise train-
ing respectively in older adults. McFarlin et al. continued 
this line of inquiry by demonstrating that exercise training 
reduced TLR4 protein expression on circulating leukocytes 
independent of subject age [44], and Timmerman et al. 
found that previously-active older adults had reduced TLR4 
protein expression on classical (CD16-) monocytes com-
pared to sedentary controls [36]. Additionally, both high 
intensity interval training and moderate intensity continu-
ous exercise training were shown to reduce TLR4 but not 
TLR2 expression on blood monocytes [45]. Although the 
important characteristics of exercise training which underlie 
the control of monocyte receptor expression have not been 
elucidated, a study in obese mice suggests that the exercise 
training effect on monocyte TLR expression may be dura-
tion-dependent [46].

Figure 1. Well-supported effects of acute and chronic exercise on 
monocytes. 
  ↑ exercise increases effect, ↓exercise decreases effect, → no change due 
to exercise.
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Exercise and Monocyte Function

As with acute exercise, the effect of exercise training on 
monocyte function has been a relatively active area of study. 
Results have been mixed depending on mode of exercise and 
subject population. For example, Nieman et al. found no ef-
fect of a 12-week walking intervention on phagocytosis or 
oxidative burst in monocytes in middle-aged obese women 
[47], while 10 weeks of either moderate exercise or high-in-
tensity interval training in healthy sedentary adults im-
proved the same parameters [48]. Voluntary wheel running 
in adult Balb/c mice has additionally been shown to have 
no effect on monocyte phagocytosis [49]. These differences 
may be attributable to differences in study population and/
or mode or intensity of exercise. Several studies have also 
examined the effect of exercise on chemotactic properties 
of monocytes, with a diet + exercise intervention reducing 
monocyte adhesion and chemotactic activity in obese men 
[50] and a 3 week exercise intervention reducing monocyte 
adhesion in a similar study [51]. 

Multiple studies have demonstrated an exercise train-
ing-induced reduction in inflammatory cytokine produc-
tion in resting and stimulated monocytes. Timmerman et 
al. found reduced LPS-stimulated TNFα production after 
12 weeks of exercise training in older adults [36], similar 
to that found with high-intensity training in younger indi-
viduals [52]. Resistance training has likewise been shown to 
reduce TNFα, IL-1β, and IL-6 production in whole blood in 
older women [53]. In unstimulated monocytes, swimming 
exercise reduced spontaneous IL-1β, IL-6, and TNFα release 
and increased release of anti-inflammatory cytokine IL-10 
in fibromyalgia patients [54]. Similarly, a two-month aerobic 
exercise intervention reduced expression of genes related to 
inflammation and oxidative stress [55].

Finally, the field of immunometabolism (the study of the 
contribution of metabolic processes to immune cell func-
tion) has exploded in recent years [56]. Metabolic process-
es, especially with respect to mitochondrial metabolism, are 
known to be dysregulated during the aging process in a vari-
ety of tissues and cell types [7]. Indeed, in support of this we 
have recently demonstrated that aging impairs mitochon-
drial respiratory capacity in human monocytes [57]. Exer-
cise has been shown to increase mitochondrial respiration in 
peripheral blood mononuclear cells [58] and thus is a poten-
tial mechanism by which exercise alters monocyte function 
in older adults. To date, this is speculative and bears further 
investigation. 

Summary 

A number of studies have examined monocyte phe-
notype and function in the context of a variety of exercise 
paradigms. To date several of these studies have focused on 
changes to monocytes as a result of consistent physical ac-
tivity. Many of these have focused on aged populations, and 
exercise training-induced reductions in CD16+ monocyte 
populations and in LPS-stimulated cytokine release are now 

fairly well-supported. Reduced pattern recognition receptor 
expression, especially TLR4, on monocytes with exercise 
training also has convincing evidential support. The mecha-
nisms by which exercise training mediate these changes are 
currently unknown, but many effects appear independent of 
diet or weight loss. Future research will be critical to deter-
mine the mechanism by which exercise training acts to alter 
monocyte phenotype and inflammation, which should allow 
for exercise therapies which are targeted to these responses 
to be developed. Additionally, few studies have compared 
multiple modes or intensities of exercise for their impact on 
monocyte phenotype or function. Therefore, although both 
aerobic and resistance exercise appear to be efficacious in 
modulating monocyte biology, future studies which shed 
light on this important variable will be important for exer-
cise prescription purposes.
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